If $\sin \theta  + 2\sin \phi  + 3\sin \psi  = 0$ and $\cos \theta  + 2\cos \phi  + 3\cos \psi  = 0$ , then the value of $\cos 3\theta  + 8\cos 3\phi  + 27\cos 3\psi  = $ 

  • A

    $\cos (3\theta  + 3\phi  + 3\psi )$

  • B

    $18\cos (\theta  + \phi  + \psi )$

  • C

    $6\cos (\theta  + \phi  + \psi )$

  • D

    $36\cos (\theta  + \phi  + \psi )$

Similar Questions

Let $\theta, 0 < \theta < \pi / 2$, be an angle such that the equation $x ^2+4 x \cos \theta+\cot \theta=0$ has equal roots for $x$. Then $\theta$ in radians is

  • [KVPY 2021]

The general solution of $\tan 3x = 1$ is

The equation $\sqrt 3 \sin x + \cos x = 4$ has

The number of solutions of the equation $\sin (9 x)+\sin (3 x)=0$ in the closed interval $[0,2 \pi]$ is

  • [KVPY 2019]

If $tanA + cotA = 4$, then $tan^4A + cot^4A$ is equal to