If $\sin \theta  + 2\sin \phi  + 3\sin \psi  = 0$ and $\cos \theta  + 2\cos \phi  + 3\cos \psi  = 0$ , then the value of $\cos 3\theta  + 8\cos 3\phi  + 27\cos 3\psi  = $ 

  • A

    $\cos (3\theta  + 3\phi  + 3\psi )$

  • B

    $18\cos (\theta  + \phi  + \psi )$

  • C

    $6\cos (\theta  + \phi  + \psi )$

  • D

    $36\cos (\theta  + \phi  + \psi )$

Similar Questions

The solution of the equation $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ is

Let $S=\left\{\theta \in(0,2 \pi): 7 \cos ^{2} \theta-3 \sin ^{2} \theta-2\right.$ $\left.\cos ^{2} 2 \theta=2\right\}$. Then, the sum of roots of all the equations $x ^{2}-2\left(\tan ^{2} \theta+\cot ^{2} \theta\right) x +6 \sin ^{2} \theta=0$ $\theta \in S$, is$...$

  • [JEE MAIN 2022]

The number of solutions to the equation $\cos ^4 x+\frac{1}{\cos ^2 x}=\sin ^4 x+\frac{1}{\sin ^2 x}$ in the interval $[0,2 \pi]$ is

  • [KVPY 2014]

If $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in  [0,2 \pi ]$ , then maximum integral value of $x$ is

The smallest positive root of the equation $tanx\,  -\,  x = 0$ lies on